Главная » Статьи о зрении » Что такое лазерное излучение? Лазерное излучение: его источники и защита от него

Что такое лазерное излучение? Лазерное излучение: его источники и защита от него

Что такое лазер?

Слово «лазер» (англ. LASER, Light Amplification by Stimulated Emission of Radiation) является аббревиатурой, которая расшифровывается как «усиление света индуцированным излучением». Частота излучения, генерируемого лазером, находится в пределах или вблизи видимой части электромагнитного спектра. Энергия усиливается до состояния чрезвычайно высокой интенсивности с помощью процесса, который носит название «излучение лазерное индуцированное».

Термин «радиация» часто понимается неправильно, потому что его также используют при описании радиоактивных материалов. В данном контексте оно означает передачу энергии. Энергия переносится из одного места в другое посредством проводимости, конвекции и излучения.

Существует множество различных типов лазеров, работающих в разных средах. В качестве рабочей среды используются газы (например, аргон или смесь гелия с неоном), твердые кристаллы (например, рубин) или жидкие красители. Когда энергия подается в рабочую среду, она переходит в возбуждённое состояние и высвобождает энергию в виде частиц света (фотонов).

Пара зеркал на обоих концах герметизированной трубки либо отражает, либо передает свет в виде концентрированного потока, называемого лазерным лучом. Каждая рабочая среда производит луч уникальной длины волны и цвета.

Цвет света лазера, как правило, выражается длиной волны. Он является неионизирующим и включает ультрафиолетовую (100-400 нм), видимую (400-700 нм) и инфракрасную (700 нм — 1 мм) часть спектра.

Читайте также:  Как вывести токсины из организма после курения?

Что такое лазерное излучение? Лазерное излучение: его источники и защита от него

Типы лазеров.

Твердотельные лазеры. Первой твердой активной средой стал рубин – кристалл корунда Al2O3 с небольшой примесью ионов хрома Cr+++. Сконструировал его Т.Мейман (США) в 1960. Широко применяется также стекло с примесью неодима Nd, алюмо-иттриевый гранат Y2Al5O12 с примесью хрома, неодима и редкоземельных элементов в виде стержней. Накачкой твердотельных лазеров обычно служит импульсная лампа, вспыхивающая примерно на 10–3 секунды, а лазерный импульс оказывается раза в два короче. Часть времени тратится на создание инверсной заселенности, а в конце вспышки интенсивность света становится недостаточной для возбуждения атомов и генерация прекратится. Лазерный импульс имеет сложную структуру, он состоит из множества отдельных пиков длительностью порядка 10–6 секунды, разделенных промежутками, примерно, в 10–5 секунды. В этом режиме так называемой свободной генерации мощность импульса может достигать десятков киловатт. Повысить мощность, просто усиливая свет накачки и увеличивая размеры лазерного стержня, невозможно чисто технически. Поэтому мощность лазерных импульсов повышают, уменьшая их длительность. Для этого перед одним из зеркал резонатора ставят затвор, который не позволяет генерации начаться, пока на верхний уровень не будут переброшены практически все атомы активного вещества. Затем затвор на короткое время открывается и вся накопленная энергия высвечивается в виде так называемого гигантского импульса. В зависимости от запаса энергии и длительности вспышки мощность импульса может составлять от нескольких мегаватт до десятков тераватт (1012 ватт).

Газовые лазеры. Активной средой газовых лазеров служат газы низкого давления (от сотых долей до нескольких миллиметров ртутного столба) или их смеси, заполняющие стеклянную трубку с впаянными электродами. Первый газовый лазер на смеси гелия и неона был создан вскоре после лазера рубинового в 1960 А.Джаваном, В.Беннетом и Д.Эрриотом (США). Накачкой газовых лазеров служит электрический разряд, питаемый высокочастотным генератором. Генерация излучения ими происходит так же, как и в твердотельных лазерах, но газовые лазеры дают, как правило, непрерывное излучение. Поскольку плотность газов очень мала, длина трубки с активной средой должна быть достаточно велика, чтобы массы активного вещества хватило для получения высокой интенсивности излучения.

К газовым лазерам можно отнести также лазеры газодинамические, химические и эксимерные (лазеры, работающие на электронных переходах молекул, существующих только в возбужденном состоянии).

Газодинамический лазер похож на реактивный двигатель, в котором сгорает топливо с добавкой молекул газов активной среды. В камере сгорания молекулы газов возбуждаются, и, охлаждаясь при сверхзвуковом течении, отдают энергию в виде когерентного излучения большой мощности в инфракрасной области, которое выходит поперек газового потока.

В химических лазерах (вариант газодинамического лазера) инверсия заселенности образуется за счет химических реакций. Наиболее высокую мощность развивают лазеры на реакции атомарного фтора с водородом:

Жидкостные лазеры. Активной средой этих лазеров (их называют также лазерами на красителях) служат различные органические соединения в виде растворов. Первые лазеры на красителях появились в конце 60-х. Плотность их рабочего вещества занимает промежуточное место между твердым телом и газом, поэтому они генерируют довольно мощное излучение (до 20 Вт) при небольших размерах кюветы с активным веществом. Работают они как в импульсном, так и в непрерывном режиме, их накачку осуществляют импульсными лампами и лазерами. Возбужденные уровни молекул красителей имеют большую ширину, поэтому жидкостные лазеры излучают сразу несколько частот. А меняя кюветы с растворами красителей, излучение лазера можно перестраивать в очень широком диапазоне. Плавную подстройку частоты излучения осуществляют настройкой резонатора.

Полупроводниковые лазеры. Этот вид оптических квантовых генераторов был создан в 1962 одновременно несколькими группами американских исследователей (Р.Холлом, М.И.Нейтеном, Т.Квистом и др.), хотя теоретическое обоснование его работы сделал Н.Г.Басов с сотрудниками в 1958. Наиболее распространенные лазерный полупроводниковый материал – арсенид галлия GaAr.

В соответствии с законами квантовой механики электроны в твердом теле занимают широкие энергетические полосы, состоящие из множества непрерывно расположенных уровней. Нижняя полоса, называемая валентной зоной, отделена от верхней зоны (зоны проводимости) так называемой запрещенной зоной, в которой энергетические уровни отсутствуют. В полупроводнике электронов проводимости мало, подвижность их ограничена, но под действием теплового движения отдельные электроны могут перескакивать из валентной зоны в зону проводимости, оставляя в ней пустое место – «дырку». И если электрон с энергией E

э спонтанно возвращается обратно в зону проводимости, происходит его «рекомбинация» с дыркой, имеющей энергию
E
д, которая сопровождается излучением из запрещенной зоны фотона частотой
n
=
E
э –
E
д. Накачка полупроводникового лазера осуществляется постоянным электрическим током (при этом от 50 до почти 100% его энергии превращается в излучение); резонатором обычно служат полированные грани кристалла полупроводника.

Лазеры в природе. Во Вселенной обнаружены лазеры естественного происхождения. Инверсная заселенность возникает в огромных межзвездных облаках конденсированных газов. Накачкой служат космические излучения, свет близких звезд и пр. Из-за гигантской протяженности активной среды (газовых облаков) – сотни миллионов километров – такие астрофизические лазеры не нуждаются в резонаторах: вынужденное электромагнитное излучение в диапазоне длин волн от нескольких сантиметров (Крабовидная туманность) до микрона (окрестности звезды Эта Карина) возникает в них при однократном проходе волны.

Электромагнитный спектр

Каждая электромагнитная волна обладает уникальной частотой и длиной, связанной с этим параметром. Подобно тому, как красный свет имеет свою собственную частоту и длину волны, так и все остальные цвета — оранжевый, желтый, зеленый и синий — обладают уникальными частотами и длинами волн. Люди способны воспринимать эти электромагнитные волны, но не в состоянии видеть остальную часть спектра.

Наибольшую частоту имеют гамма-лучи, рентгеновские лучи и ультрафиолет. Инфракрасное, микроволновая радиация и радиоволны занимают нижние частоты спектра. Видимый свет находится в очень узком диапазоне между ними.

Лазерное излучение: воздействие на человека

Лазер производит интенсивный направленный пучок света. Если его направить, отразить или сфокусировать на объект, луч частично поглотится, повышая температуру поверхности и внутренней части объекта, что может вызвать изменение или деформацию материала. Эти качества, которые нашли применение в лазерной хирургии и обработке материалов, могут быть опасны для тканей человека.

Кроме радиации, оказывающей тепловое воздействие на ткани, опасно лазерное излучение, производящее фотохимический эффект. Его условием является достаточно короткая длина волны, т. е. ультрафиолетовая или синяя части спектра. Современные устройства производят лазерное излучение, воздействие на человека которого сведено к минимуму. Энергии маломощных лазеров недостаточно для нанесения вреда, и опасности они не представляют.

Читайте также:  Избыток воды в организме – причины, симптомы и методы удаления

Ткани человека чувствительны к воздействию энергии, и при определенных обстоятельствах электромагнитное излучение, лазерное в том числе, может привести к повреждению глаз и кожи. Были проведены исследования пороговых уровней травмирующей радиации.

Использование в медицине

Применение лазерного излучения в медицине — это самый настоящий прорыв в терапии больных, которые нуждаются в хирургической операции. Лазерный луч также используют в качестве инструмента хирурга.

С помощью скальпеля лазерного типа врач создает бескровные разрезы, что обеспечивается моментальным спаиванием капилляров и кровеносных сосудов. Кроме того, пользуясь подобным инструментарием у специалиста есть возможность видеть всю рабочую зону. Лазерный пучок рассекает кожный покров удаленно, не имея прямого контакта с сосудами и органами.

Читать также Электромагнитное излучение: влияние на здоровье человека

При этом достигается стерильность. Высокая концентрация лазера дает возможность производить хирургические вмешательства с минимальными показателями травматизации. Больные после таких операций намного быстрее восстанавливаются, то есть трудоспособность возвращается намного быстрее. Кроме того, манипуляции лазерным скальпелем не приносят никакого дискомфорта после операции.

Активное технологическое развитие существенно расширилось возможности использования лазерного излучения. Ученые выявили положительное воздействие и на состояние кожного покрова. По этой причине лазер сегодня часто используют в дерматологии и косметологии.

Реакция и степень поглощения лучей кожным покровом зависят от его типа. Лазерные приборы позволяют регулировать длину волы для каждой отдельной ситуации. Применение:

  • терапия угревых высыпаний;
  • эпиляция — удаление излишней растительности и разрушение фолликула волоса;
  • устранение родимых пятен и пигментации;
  • обеззараживание при бактериальном воздействии;
  • препятствует дальнейшему распространению инфекции.

Одной из самых первых отраслей, где начал активно применяться лазер, является офтальмология. Глазная микрохирургия выделяет следующие направления, при которых используется этот вид облучения:

  • фотодеструкция — иссечение тканей;
  • метод лазерной коагуляции — применение термосвойств для терапии болезней глазных сосудов;
  • фотоабляция — равномерное удаление тканевых волокон, применяется для снятия помутнения роговицы и в качестве послеоперационной терапии глаукомы;
  • фотоиспарение — продолжительное термическое воздействие, используется при конъюнктивите и воспалениях глазного нерва;
  • лазерная стимуляция — польза в том, что эта технология обладает рассасывающим и противовоспалительным эффектом, используется для лечения гемофтальмов и склеритов.

Помимо всего прочего, лазер применяется и при онкологических патологиях кожного покрова. Очень хорошие результаты он демонстрирует при устранении меланобластомы. В некоторых случаях лазерная технология применяется для терапии рака ЖКТ начальных стадий. Однако лазер не эффективен при наличии метастаз и глубокой локализации злокачественного образования.

Опасность для глаз

Человеческий глаз более подвержен травмам, чем кожа. Роговица (прозрачная внешняя передняя поверхность глаза), в отличие от дермы, не имеет внешнего слоя омертвевших клеток, защищающих от воздействия окружающей среды. Лазерное и ультрафиолетовое излучение поглощается роговицей глаза, что может нанести ей вред. Травма сопровождается отёком эпителия и эрозией, а при тяжёлых повреждениях – помутнением передней камеры.

Хрусталик глаза также может быть подвержен травмам, когда на него воздействует различное лазерное излучение – инфракрасное и ультрафиолетовое.

Наибольшую опасность, однако, представляет воздействие лазера на сетчатку глаза в видимой части оптического спектра — от 400 нм (фиолетовый) до 1400 нм (ближний инфракрасный). В пределах этой области спектра коллимированные лучи фокусируются на очень маленьких участках сетчатки. Наиболее неблагоприятный вариант воздействия происходит, когда глаз смотрит вдаль и в него попадает прямой или отражённый луч. В этом случае его концентрация на сетчатке достигает 100 000 крат.

Таким образом, видимый пучок мощностью 10 мВт/см2 воздействует на сетчатку глаза с мощностью 1000 Вт/см2. Этого более чем достаточно, чтобы вызвать повреждение. Если глаз не смотрит вдаль, или если луч отражается от диффузной, не зеркальной поверхности, к травмам ведёт значительно более мощное излучение. Лазерное воздействие на кожу лишено эффекта фокусировки, поэтому она гораздо меньше подвержена травмам при этих длинах волн.

Меры защиты и предосторожности

В группу риска входят люди, работа которых предполагает использование квантовых генераторов. Санитарные нормативы разделяют опасность лазерного излучения на четыре класса. Для человеческого организма могут представлять опасность все классы, кроме первого. К техническим вариантам защиты относятся:

  • грамотное обустройство помещений промышленного назначения и правильный выбор внутренней облицовки (лазер не должен отражаться от поверхностей);
  • рациональная установка приборов-излучателей;
  • ограждение участка, который подвергается облучению;
  • соблюдение требований по эксплуатации и обслуживанию лазерных установок.

Читать также Озонатор: вред, польза и особенности применения

Читайте также:  Настойка болиголова: исцеление от рака или смерть?

Другие меры защиты — индивидуальные. Она предполагает применение защитных очков, спецодежды, экранов, кожухов, призм и линз.

Бытовое применение лазера тоже может представлять опасность для человеческого организма. Несоблюдение инструкции может привести к очень печальным последствиям. Защита в этом случае предполагает следующие рекомендации:

  • запрещено направлять лазерный поток на зеркала, стекла и иные отражающие поверхности;
  • нельзя направлять луч в глазные яблоки;
  • лазерные гаджеты нужно хранить в месте, недоступном маленьким детям.

Лазер может иметь механическое, фотохимическое, энергетическое или тепловое воздействие. Это зависит от типа используемого излучателя. Самым опасным считается прямое лазерное излучение, так как он имеет максимальную интенсивность. Думая о том, вреден ли лазер для здоровья, следует запомнить, что нерациональное использование самодельных лазерных устройств, фонариков или световых указов может причинить вред не только владельцу, но и окружающим.

Классификация

В зависимости от мощности или энергии пучка и длины волны излучения, лазеры делятся на несколько классов. Классификация основана на потенциальной способности устройства вызывать немедленную травму глаз, кожи, воспламенение при прямом воздействии луча или при отражении от диффузных отражающих поверхностей. Все коммерческие лазеры подлежат идентификации с помощью нанесённых на них меток. Если устройство было изготовлено дома или иным образом не помечено, следует получить консультацию по соответствующей его классификации и маркировке. Лазеры различают по мощности, длине волны и длительности экспозиции.

Виды лазерных вмешательств в дерматологии

Все виды лазерных вмешательств в дерматологии могут быть условно подразделены на два типа:

  • I тип. Операции, в ходе которых проводят абляцию участка пораженной кожи, включая эпидермис.
  • II тип. Операции, нацеленные на избирательное удаление патологических структур без нарушения целостности эпидермиса.

I тип.Абляция.

Этот феномен представляет собой одну из фундаментальных, интенсивно изучаемых, хотя еще и не до конца решенных проблем современной физики. Термин «абляция» переводится на русский язык как удаление или ампутация. В немедицинской лексике это слово означает размывание или таяние. В лазерной хирургии под абляцией понимают ликвидацию участка живой ткани непосредственно под действием на нее фотонов лазерного излучения. При этом имеется в виду эффект, проявляющийся именно в ходе самой процедуры облучения, в отличие от ситуации (например, при фотодинамической терапии), когда облученный участок ткани после прекращения лазерного воздействия остается на месте, а его постепенная ликвидация наступает позднее в результате серии местных биологических реакций, развивающихся в зоне облучения [2, 6].

Энергетические характеристики и производительность абляции определяются свойствами облучаемого объекта, характеристиками излучения и параметрами, неразрывно связывающими свойства объекта и лазерного луча, — коэффициентами отражения, поглощения и рассеивания данного вида излучения в данном виде ткани или ее отдельных составляющих. К свойствам облучаемого объекта относятся: соотношение жидкого и плотного компонентов, их химические и физические свойства, характер внутри- и межмолекулярных связей, термическая чувствительность клеток и макромолекул, кровоснабжение ткани и т. д. Характеристиками излучения – это длина волны, режим облучения (непрерывный или импульсный), мощность, энергия в импульсе, суммарная поглощенная энергия и т. д.

Наиболее детально механизм абляции исследован при использовании СО2 лазера (l = 10,6 мкм). Его излучение при плотности мощности ³ 50 кВт/см2 интенсивно поглощается молекулами тканевой воды. При таких условиях происходит быстрый разогрев воды, а от нее и неводных компонентов ткани. Следствием этого является стремительное (взрывное) испарение тканевой воды (эффект вапоризации) и извержение водяных паров вместе с фрагментами клеточных и тканевых структур за пределы ткани с формированием абляционного кратера. Вместе с перегретым материалом из ткани удаляется и бόльшая часть тепловой энергии. Вдоль стенок кратера остается узкая полоска разогретого расплава, от которого тепло передается на окружающие интактные ткани (рис. 4). При низкой плотности энергии (рис. 5, А) выброс продуктов абляции относительно невелик, поэтому значительная часть тепла от массивного слоя расплава передается в ткань. При более высокой плотности (рис. 5, Б) наблюдается обратная картина. При этом незначительные термические повреждения сопровождаются механической травмой ткани за счет ударной волны. Часть разогретого материала в виде расплава остается вдоль стенок абляционного кратера, причем именно этот слой является резервуаром тепла, передаваемого в ткань за пределы кратера. Толщина этого слоя одинакова по всему контуру кратера. С повышением плотности мощности она уменьшается, а с понижением растет, что сопровождается соответственно уменьшением или увеличением зоны термических повреждений. Таким образом, повышая мощность излучения, мы добиваемся увеличения скорости удаления ткани, снижая при этом глубину термического повреждения [6].

Область применения СО2-лазера очень обширна. В фокусированном режиме он используется для иссечения тканей с одновременной коагуляцией сосудов. В дефокусированном режиме за счет уменьшения плотности мощности производится послойное удаление (вапоризация) патологической ткани. Именно таким способом ликвидируют поверхностные злокачественные и потенциально злокачественные опухоли (базальноклеточная карцинома, актинический хейлит, эритроплазия Кейра), ряд доброкачественных новообразований кожных покровов (ангиофиброма, трихлеммома, сирингома, трихоэпителиома и др.), крупные послеожоговые струпы, воспалительные кожные заболевания (гранулемы, узелковый хондродерматит ушной раковины), кисты, инфекционные поражения кожи (бородавки, рецидивирующие кондиломы, глубокие микозы), сосудистые поражения (пиогенная гранулема, ангиокератома, кольцевидная лимфангиома), образования, обусловливающие косметические дефекты (ринофима, глубокие постугревые рубцы, эпидермальные родимые пятна, лентиго, ксантелазма) и др.

Читайте также:  Биоритм зрение 24 — инструкция, цена, отзывы

Дефокусированный луч СО2-лазера используют и в сугубо косметической процедуре — так называемой лазерной дермабразии, то есть послойном удалении поверхностных слоев кожи с целью омоложения облика пациента [6]. В импульсном режиме с длительностью импульса менее 1 мс за один проход селективно вапоризируется 25—50 мкм ткани; при этом образуется тонкая зона резидуального термического некроза в пределах 40—120 мкм. Размеры этой зоны достаточны для временной изоляции дермальных кровеносных и лимфатических сосудов, что в свою очередь позволяет снизить риск формирования рубца.

Обновление кожи после лазерной дермабразии обусловлено несколькими причинами. Абляция уменьшает выраженность морщин и текстурных аномалий за счет поверхностного испарения ткани, тепловой коагуляции клеток в дерме и денатурации экстрацеллюлярных матричных белков. Во время процедуры происходит мгновенная видимая контракция кожи в пределах 20—25% как результат усадки (сжатия) ткани из-за дегидратации и сжатия коллагеновых волокон. Наступление отсроченного, но более продолжительного результата обновления кожи достигается за счет процессов, связанных с реакцией тканей на травму. После воздействия лазером в области сформировавшейся раны развивается асептическое воспаление. Это стимулирует посттравматическое высвобождение факторов роста и инфильтрацию фибробластами. Наступающая реакция автоматически сопровождается всплеском активности, что неизбежно ведет к тому, что фибробласты начинают производить больше коллагена и эластина. В результате вапоризации происходит активация процессов обновления и кинетики пролиферации эпидермальных клеток. В дерме запускаются процессы регенерации коллагена и эластина с последующим их расположением в параллельной конфигурации.

Аналогичные события происходят при использовании импульсных лазеров, излучающих в ближней и средней инфракрасной области спектра (1,54—2,94 мкм): эрбиевого с диодной накачкой (l = 1,54 мкм), тулиевого (l = 1,927 мкм), Ho:YSSG (l = 2,09 мкм), Er:YSSG (l = 2,79 мкм), Er:YAG (l = 2,94 мкм). Для перечисленных лазеров характерны очень высокие коэффициенты поглощения водой. Например, излучение Er:YAG-лазера поглощается водосодержащими тканями в 12—18 раз активнее, чем излучение СО2-лазера. Как и в случае СО2-лазера, вдоль стенок абляционного кратера в ткани, облученной Er:YAG-лазером, образуется слой расплава. Следует иметь в виду, что при работе на биоткани с этим лазером существенное значение для характера тканевых изменений имеет энергетическая характеристика импульса, в первую очередь его пиковая мощность. Это означает, что даже при минимальной мощности излучения, но более длительном импульсе резко возрастает глубина термонекроза. В таких условиях масса удаленных перегретых продуктов абляции относительно меньше массы оставшихся. Это обусловливает глубокие термические повреждения вокруг абляционного кратера. В то же время при мощном импульсе ситуация иная — минимальные термические повреждения вокруг кратера при высокоэффективной абляции. Правда, в этом случае положительный эффект достигается ценой обширных механических повреждений ткани ударной волной. За один проход эрбиевым лазером происходит абляция ткани на глубину 25—50 мкм с минимальным резидуальным термическим повреждением. Вследствие этого процесс реэпителизации кожи значительно короче, чем после воздействия СО2-лазера.

II тип. Селективное воздействие.

К операциям этого типа относятся процедуры, в ходе которых добиваются лазерного повреждения определенных внутридермальных и подкожных образований без нарушения целостности кожного покрова. Эта цель достигается подбором характеристик лазера: длины волны и режима облучения. Они должны обеспечить поглощение лазерного света хромофором (окрашенной структурой-мишенью), что приведет к его разрушению или обесцвечиванию за счет превращения энергии излучения в тепловую (фототермолиз), а в некоторых случаях и в механическую энергию. Мишенью лазерного воздействия могут быть: гемоглобин эритроцитов, находящихся в многочисленных расширенных дермальных сосудах при винных пятнах (PWS); пигмент меланин различных кожных образований; угольные, а также другие, по-разному окрашенные инородные частицы, вводимые под эпидермис при татуировке или попадающие туда в результате иных воздействий.

Идеальным селективным воздействием можно считать такое воздействие, при котором лучи лазера поглощаются только структурами мишени, а за ее пределами поглощение отсутствует. Для достижения такого результата специалисту, выбравшему лазер с соответствующей длиной волны, оставалось бы лишь установить плотность энергии излучения и продолжительность экспозиций (или импульсов), а также интервалов между ними. Эти параметры определяют с учетом (ВТР) для данной мишени — промежутка времени, за который возросшая в момент подачи импульса температура мишени опускается на половину ее прироста по отношению к исходной. Превышение длительности импульса над значением ВТР вызовет нежелательный перегрев ткани вокруг мишени. К такому же эффекту приведет и уменьшение интервала между импульсами. В принципе, все эти условия могут быть смоделированы математически перед операцией, однако сам состав кожи не позволяет в полной мере воспользоваться расчетными данными. Дело в том, что в базальном слое эпидермиса находятся меланоциты и отдельные кратиноциты, которые содержат меланин. Поскольку этот пигмент интенсивно поглощает свет в видимой, а также близких к ней ультрафиолетовой и инфракрасной областях спектра («оптическое окно» меланина находится в пределах от 500 до 1100 нм), любое лазерное излучение в данном диапазоне будет поглощаться меланином. Это может привести к термическому повреждению и гибели соответствующих клеток. Более того, излучение в видимой части спектра поглощается также цитохромами и флавиновыми ферментами (флавопротеидами) как меланинсодержащих клеток, так и всех остальных типов клеток эпидермиса и дермы. Из этого следует, что при лазерном облучении мишени, расположенной под поверхностью кожи, некоторое повреждение эпидермальных клеток становится неизбежным. Поэтому реальная клиническая задача сводится к компромиссному поиску таких режимов лазерного облучения, при которых стало бы возможным достигать максимального поражения мишени при наименьшем повреждении эпидермиса (с расчетом на его последующую регенерацию, главным образом за счет соседних необлученных участков кожи).

Соблюдение всех этих условий применительно к конкретной мишени приведет к ее максимальному повреждению (разогреву или распаду) при минимальном перегреве или механической травме соседних структур.

Так, для облучения патологических сосудов винного пятна (PWS) наиболее рациональным является использование лазера с самой большой длиной волны, соответствующей пикам светопоглощения гемоглобина (l = 540, 577, 585 и 595 нм), при длительности импульсов порядка миллисекунд, поскольку при этом поглощение излучения меланином будет незначительным (положение 1 теории селективного фототермолиза). Относительно большая длина волны эффективно обеспечит глубинный прогрев ткани (положение 2), а сравнительно продолжительный импульс будет соответствовать весьма крупным размерам мишени (сосуды с эритроцитами; положение 3).

Если же целью процедуры является ликвидация частиц татуировки, то помимо подбора длины волны излучения, соответствующей цвету этих частиц, потребуется установить продолжительность импульса, которая значительно меньше, чем в случае винных пятен, чтобы добиться механического разрушения частиц при минимальном термическом повреждении других структур (положение 4).

Разумеется, соблюдение всех этих условий не обеспечивает абсолютную защиту эпидермиса, однако исключает слишком грубое его повреждение, которое привело бы впоследствии к стойкому косметическому дефекту из-за чрезмерного рубцевания.

Условно безопасные устройства

Лазеры второго класса излучают в видимой части спектра. Это лазерное излучение, источники которого вызывают у человека нормальную реакцию неприятия слишком яркого света (мигательный рефлекс). При воздействии луча человеческий глаз моргает через 0,25 с, что обеспечивает достаточную защиту. Однако излучение лазерное в видимом диапазоне способно повредить глаз при постоянном воздействии. Примеры: лазерные указатели, геодезические лазеры.

Лазеры 2а-класса являются устройствами специального назначения с выходной мощностью менее 1 мВт. Эти приборы вызывают повреждение только при непосредственном воздействии в течение более 1000 с за 8-часовой рабочий день. Пример: устройства считывания штрих-кода.

Опасные лазеры

К классу 3а относят устройства, которые не травмируют при кратковременном воздействии на незащищённый глаз. Могут представлять опасность при использовании фокусирующей оптики, например, телескопов, микроскопов или биноклей. Примеры: гелий-неоновый лазер мощностью 1–5 мВт, некоторые лазерные указатели и строительные уровни.

Луч лазера класса 3b может привести к травме при непосредственном воздействии или при его зеркальном отражении. Пример: гелий-неоновый лазер мощностью 5-500 мВт, многие исследовательские и терапевтические лазеры.

Класс 4 включает устройства с уровнями мощности более 500 мВт. Они опасны для глаз, кожи, а также пожароопасны. Воздействие пучка, его зеркального или диффузного отражений может стать причиной глазных и кожных травм. Должны быть предприняты все меры безопасности. Пример: Nd:YAG-лазеры, дисплеи, хирургия, металлорезание.

Читайте также:  5 рецептов настойки из чеснока для чистки сосудов — как приготовить ее на спирту и на водке?

Лазерное излучение: защита

Каждая лаборатория должна обеспечить соответствующую защиту лиц, работающих с лазерами. Окна помещений, через которые может проходить излучение устройств 2, 3 или 4 класса с нанесением вреда на неконтролируемых участках, должны быть покрыты или иным образом защищены во время работы такого прибора. Для обеспечения максимальной защиты глаз рекомендуется следующее.

  • Пучок необходимо заключить в неотражающую негорючую защитную оболочку, чтобы свести к минимуму риск случайного воздействия или пожара. Для выравнивания луча использовать люминесцентные экраны или вторичные визиры; избегать прямого воздействия на глаза.
  • Для процедуры выравнивания луча использовать наименьшую мощность. По возможности для предварительных процедур выравнивания использовать устройства низкого класса. Избегать присутствия лишних отражающих объектов в зоне работы лазера.
  • Ограничить прохождение луча в опасной зоне в нерабочее время, используя заслонки и другие преграды. Не использовать стены комнаты для выравнивания луча лазеров класса 3b и 4.
  • Использовать неотражающие инструменты. Некоторый инвентарь, не отражающий видимый свет, становится зеркальным в невидимой области спектра.
  • Не носить отражающие ювелирные изделия. Металлические украшения также повышают опасность поражения электрическим током.

Влияние лазерного излучения на организм человека и его последствия

Чуть позже такое излучение перестало принимать только промышленные формы и стало встречаться в быту. Но не все знают, как отражается влияние лазерного излучения на организм человека при регулярном и периодическом облучении.

Что такое лазерное излучение?

Лазерное излучение рождается по принципу создания света. В обоих случаях используются атомы. Но в ситуации с лазерами присутствуют другие физические процессы, и прослеживается воздействие электромагнитного поля внешнего типа. Из-за этого ученые называют излучение от лазеров вынужденным или стимулированным.

В терминологии физики лазерным излучением называют электромагнитные волны, которые распространяются почти параллельно по отношению друг к другу. Из-за этого лазерный луч отличается острой направленностью. Кроме этого такой луч обладает небольшим углом рассеивания совместно с огромной интенсивностью влияния на поверхность, которую облучают.

Главным отличием лазера от стандартной лампы накаливания считается спектральный диапазон. Лампа числится рукотворным источником света, который излучает электромагнитные волны. Спектр освещения у классической лампы составляет почти 360 градусов.

Воздействие лазерного облучения на все живое

Вопреки стереотипам, влияние лазерного излучения на организм человека не всегда подразумевает что-то негативное. Из-за повсеместного использования квантовых генераторов в разных жизненных сферах ученые решили задействовать возможности узконаправленного луча в медицине.

В ходе многочисленных исследований стало понятно, что лазерное облучение имеет несколько характерных свойств:

  • Повреждения от лазера могут производиться не только в процессе прямого воздействия на организм из аппарата. Нанести ущерб может даже рассеянное облучение или отраженные лучи.
  • Между степенью поражения и основными параметрами электромагнитной волны прослеживается прямая связь. Также на тяжесть поражения влияет расположение облученной ткани.
  • Негативный эффект при поглощении тканями энергии может выражаться в тепловом или световом воздействии:
  • повышение температуры, которое сопровождается ожогом;
  • закипание межтканевой и клеточной жидкостей;
  • образование пара, создающего весомое давление;
  • взрыв и ударная волна, разрушающие все ткани поблизости.

Зачастую неправильно использованный лазерный излучатель несет, в первую очередь, угрозу для кожных покровов. Если влияние было особенно сильным, то кожа будет выглядеть отечной, со следами многочисленных кровоизлияний. Также на теле будут встречаться большие участки омертвевших клеток.

Задевает такое облучение и внутренние ткани. Но при масштабных внутренних поражениях рассеянное воздействие лучами не столько сильно, как прямое или отраженное зеркально. Подобные повреждения будут гарантировать патологические изменения в функционировании различных систем организма.

Кожный покров, который страдает больше всего, является защитой внутренних органов каждого человека. Из-за этого он берет большую часть негативного воздействия на себя. В зависимости от разных степеней поражения на коже будут проявляться покраснения или прослеживаться некроз.

Исследователи пришли к выводу, что люди с темной кожей менее восприимчивы к глубинным поражениям из-за лазерного облучения.

Схематически все ожоги можно разделить на четыре степени вне зависимости от пигментации:

  • I степень. Подразумевает стандартные ожоги эпидермиса.
  • II степень. Включает ожоги дермы, что выражается в образовании характерных пузырей поверхностного слоя кожи.
  • III степень. Основывается на глубинных ожогах дермы.
  • IV степень. Самая опасная степень, которая отличается деструкцией всей толщины кожи. Поражение охватывает подкожную клетчатку, а также соседствующие к ней слои.

Лазерные поражения глаз:

  • сетчатку,
  • роговицу,
  • радужную оболочку,
  • хрусталик.

Причин для подобного воздействия существует несколько. Основными из них выступают:

  • Невозможность вовремя среагировать. Из-за того что длительность импульса составляет не более 0,1 секунды, человек не успевает моргнуть. Из-за этого глаз остается незащищенным.
  • Легкая уязвимость. По своим особенностям хрусталик и роговица считаются сами по себе уязвимыми органами.
  • Оптическая глазная система. Из-за фокусировки лазерного излучения на глазном дне, точка облучения при попадании на сосуд сетчатки способна закупорить его. Так как там нет болевых рецепторов, то повреждение обнаружить мгновенно не получится. Только после того как выжженная территория становится больше, человек замечает отсутствие части изображения.

Чтобы быстрее сориентироваться при потенциальном поражении, эксперты советуют прислушиваться к таким симптомам:

  • спазмы век,
  • отек век,
  • болевые ощущения,
  • кровоизлияние в сетчатке,
  • помутнение.

Опасности добавляет тот факт, то поврежденные лазером клетки сетчатки теряют возможность восстановиться. Так как интенсивность облучения, влияющего на органы зрения ниже, чем идентичный порог для кожи, врачи призывают к осторожности.

Следует остерегаться инфракрасных лазеров разного типа, а также приборов, которые генерируют излучение с мощностью свыше 5 мвт. Распространяется правило на технику, выдающую лучи видимого спектра.

Взаимосвязь между лазерной волной и ее сферой применения

Каждая из областей применения лазерного излучения ориентируется на строго определенный показатель длины волны.

Данный показатель напрямую зависит от природы. Вернее, от электронного строения рабочего тела. Это означает, что ответственной за длину волны выступает среда, где происходит генерация ее излучения.

В мире имеются разные виды твердотельных и газовых лазеров. Задействованные лучи должны принадлежать к одному из трех наиболее распространенных типов:

  • видимый,
  • ультрафиолетовый,
  • инфракрасный.

При этом рабочий диапазон облучения может колебаться от 180 нм до 30 мнм.

Особенности влияния лазера на человеческий организм базируются на длине волны. Так, например, человек быстрее реагирует на зеленый лазер, чем на красный. Последний не отличается безопасностью для всего живого. Причина кроется в том, что наше зрение почти в 30 раз луче воспринимает зеленый, нежели красный цвет.

Как защититься от лазера?

В большинстве случаев защита от лазерного излучения нужна тем людям, чья работа тесно связана с его постоянным использованием. Если предприятие имеет на своем балансе любой тип квантового генератора, то его руководители обязательно производят инструктаж своих сотрудников.

Эксперты разработали отдельную сводку правил поведения и безопасности, которые позволят защитить сотрудника от возможных последствий излучения. Главным правилом выступает наличие средств индивидуальной защиты. Причем подобные средства могут разительно отличаться в зависимости от прогнозируемой степени опасности.

Всего в международной классификации предусмотрено разделение на четыре класса опасности. Соответствующую маркировку должен указать изготовитель. Только первый класс считается относительно безопасным даже для органов зрения.

Защитные очки

При работе с лазерами 4 класса с открытой опасной зоной или при риске отражения следует пользоваться защитными очками. Тип их зависит от вида излучения. Очки необходимо выбирать для защиты от отражений, особенно диффузных, а также для обеспечения защиты до уровня, когда естественный защитный рефлекс может предотвратить травмы глаз. Такие оптические приборы сохранят некоторую видимость луча, предотвратят ожоги кожи, снизят возможность других несчастных случаев.

Факторы, которые следует учитывать при выборе защитных очков:

  • длина волны или область спектра излучения;
  • оптическая плотность при определенной длине волны;
  • максимальная освещённость (Вт/см2) или мощность пучка (Вт);
  • тип лазерной системы;
  • режим мощности — импульсное лазерное излучение или непрерывный режим;
  • возможности отражения — зеркального и диффузного;
  • поле зрения;
  • наличие корректирующих линз или достаточного размера, позволяющего ношение очков для коррекции зрения;
  • комфорт;
  • наличие вентиляционных отверстий, предотвращающих запотевание;
  • влияние на цветовое зрение;
  • ударопрочность;
  • возможность выполнения необходимых задач.

Так как защитные очки подвержены повреждениям и износу, программа безопасности лаборатории должна включать периодические проверки этих защитных элементов.

Добавить комментарий