Главная » Статьи о зрении » Список смертельно опасных ядовитых газов и их воздействие на человека

Список смертельно опасных ядовитых газов и их воздействие на человека

Список смертельно опасных ядовитых газов и их воздействие на человека

Среди отравляющих веществ газы — самые коварные. В отличие от жидкостей и твердых веществ они распространяются по объему помещения, и каких-то границ у этого распространения нет. Очень часто ядовитый газ не имеет ни цвета, ни запаха, его наличие может стать следствием чьей-то неосторожности или злого умысла, а об отравлении можно узнать и не сразу. Знание особенностей таких ядов, соблюдение правил техники безопасности и норм гражданской обороны, а также умение оказывать первую помощь — залог вашей безопасности.

Классификация отравляющих газов

Понятия «ядовитый газ» и «газ как агрегатное состояние вещества» в физике и химии несколько различаются.

Так, в число первых включают различные аэрозоли и летучие жидкости, температура испарения которых находится в пределах «комфортных» условий для человека.

Классифицировать такие отравляющие вещества можно двумя способами — по назначению и принципу действия.

Практическое применение

Как ни странно, но большинство таких веществ вовсе не предназначены для того, чтобы кого-то отравлять. Они имеют вполне легитимное применение и активно используются в хозяйстве. Итак, по критерию используемости их можно поделить на:

Читайте также:  Основные свойства и источники инфракрасного излучения

  • боевые отравляющие вещества (БОВ),
  • вещества, применяемые в промышленности и в быту,
  • побочные продукты химических реакций.

К первой группе относятся сдедующие газы и аэрозоли: синильная кислота, хлорциан, фосген, иприт, зарин и еще ряд соединений фосфора. Ко второй принадлежат хлор, аммиак, различные средства дезинсекции, а к третьей — сероводород, угарный газ, азотные оксиды (все они — ядовиты).

Принцип действия

Токсичность любого вещества проявляется по-разному, и газы – не исключение. Симптоматика, вызываемая попаданием ядовитого газа в организм, существенно различается. Выделяют следующие группы по принципу действия:

  • нервно-паралитические, то есть вызывающие общий или локальный паралич,
  • кожно-нарывные, разрушающие кожные покровы,
  • удушающие,
  • слезоточивые,
  • психотомиметические,
  • раздражающие слизистые оболочки,
  • общей токсичности.

Некоторые обладают комплексным воздействием на организм.

Нервно-паралитические газы: история создания

Официальной датой появления химического оружия является 15 апреля 1915 года – день памятной немецкой газовой атаки на французов. Однако попытки использовать газы для поражения противника предпринимались задолго до этой даты. Они описаны в старинных китайских летописях, о применении газов во время Пелопоннесской войны сообщали древнегреческие историки, неоднократно отравляющие вещества пытались использовать и в Средние века. Однако низкий уровень развития технологий (прежде всего, конечно, химии) не позволял делать действительно эффективное химическое оружие.

Ситуация кардинально изменилась в конце XIX века. Стремительное развитие химической промышленности позволило начать работы по созданию боевых отравляющих веществ. Они стартовали сразу в нескольких странах: в Великобритании, России и Германии. Наиболее впечатляющих результатов удалось добиться тевтонцам, что и было ими «блестяще» доказано во время Первой мировой войны.

Отравляющие вещества, которые были использованы в ходе этого конфликта, сегодня относят к химическому оружию первого поколения. Вот основные их группы:

  • ОВ общетоксического действия (синильная кислота);
  • ОВ кожно-нарывного действия (иприт, люизит);
  • ОВ удушающего действия (фосген, дифосген);
  • ОВ раздражающего действия (например, хлорпикрин).

Во время ПМВ от действия химического оружия пострадало около 1 млн человек, сотни тысяч людей погибли.

После окончания ПМВ работы в области совершенствования химического оружия продолжились, а смертоносные арсеналы продолжали пополняться. Военные практически не сомневались, что следующая война будет также химической.

В 30-х годах сразу в нескольких странах начались работы над созданием химического оружия на основе фосфорорганических веществ. В Германии группа ученых работала над созданием новых видов пестицидов, ею руководил доктор Шрадер. В 1936 году ему удалось синтезировать новый фосфорорганический инсектицид, который имел высочайшую эффективность. Вещество получило название табун. Однако вскоре выяснилось, что он прекрасно подходит не только для уничтожения насекомых-вредителей, но и для массовой травли людей. Последующие разработки уже шли под патронатом военных.

В 1938 году было получено еще более токсичное вещество – изопропиловый эфир метилфторфосфоновой кислоты. Оно получило название по первым буквам фамилий ученых, которые синтезировали его – зарин. Этот газ оказался в десять раз смертоносней табуна. Еще более токсичным и стойким стал зоман – пинаколиловый эфир метилфторфосфоновой кислоты, он был получен несколькими годами позже. Последнее вещество из этого ряда – циклозарин – был синтезирован в 1944 году и считается самым опасным из них. Зарин, зоман, V-газы принято считать химическим оружием второго поколения.

После окончания войны работы над совершенствованием нервно-паралитических газов были продолжены. В 50-е годы были впервые синтезированы V-газы, которые в несколько раз токсичнее зарина, зомана и табуна. Впервые V-газы (их также называют VX-газы) были синтезированы в Швеции, но очень скоро их удалось получить и советским химикам.

В 60-70-е годы начались разработки химического оружия третьего поколения. К этой группе относятся отравляющие вещества с непредвиденным механизмом поражения и токсичностью, еще более превышающую нервно-паралитические газы. Кроме этого, в послевоенные годы большое внимание уделялось совершенствованию средств доставки ОВ. В этот период в Советском Союзе и США началась разработка бинарного химического оружия. Это разновидность отравляющих веществ, применение которых возможно только после смешивания двух относительно безвредных компонентов (прекурсоров). Разработка бинарных газов значительно упрощает производство химического оружия и делает практически невозможным международный контроль за его распространением.

С момента первого применения боевых газов постоянно шла работа над совершенствованием средств защиты против химического оружия. И в этой области были достигнуты значительные результаты. Поэтому в настоящее время применение отравляющих веществ против регулярных войск не будет настолько эффективным, как во время Первой мировой войны. Совсем другое дело, если применить химическое оружие против гражданского населения, в этом случае результаты действительно устрашают. Подобные атаки любили проводить большевики во время Гражданской войны, в середине тридцатых годов итальянцы использовали боевые газы в Эфиопии, в конце 80-х иракский диктатор Саддам Хусейн травил нервно-паралитическими газами восставших курдов, фанатики из секты Аум Сенрикё распылили зарин в токийском метро.

Читайте также:  Дигиталисная интоксикация: диагностика, лечебная тактика и профилактика

Последние случаи применения химического оружия связаны с гражданским конфликтом в Сирии. Начиная с 2011 года, правительственные войска и оппозиция постоянно обвиняют друг друга в использовании отравляющих веществ. 4 апреля 2021 года в результате химической атаки населенного пункта Хан-Шейхун, что на северо-западе Сирии, погибло около сотни человек, почти шестьсот получили отравления. Эксперты заявили, что для атаки был использован нервно-паралитический газ зарин и обвинили в ней правительственные силы. Фото сирийских детей, отравленных газом, облетели все мировые СМИ.

Характеристики ядовитых веществ

Чтобы отличать отравляющие вещества друг от друга, следует знать их физические и химические свойства. Немалое значение имеют также вероятность нахождения вещества в конкретном месте и его концентрация. От последнего зависит возможность летального исхода от действия ядовитого газа. В списке-таблице указаны некоторые их свойства.

отравляющее вещество химическая формула физические свойства принцип действия летальная концентрация
хлор Cl2 желто-зеленый газ со сладковатым запахом, тяжелее воздуха удушающее, при попадании в легкие образует соляную кислоту 6 мг/м3
зарин C4H10FO2P Жидкость без цвета и запаха, летучая при 20 градусах нервно-паралитический газ 70 мг/м3 на 1 минуту дыхания
иприт C4H8Cl2S Бесцветная жидкость с чесночным или горчичным запахом кожно-нарывное, разрушает клеточные мембраны, очень агрессивный в любых количествах
угарный газ, оксид углерода (II), окись углерода CO токсичный газ без цвета и запаха общетоксическое, препятствует снабжению органов кислородом 29 мг/м3
фосген COCl2 бесцветный ядовитый газ с запахом прелого сена удушающее 4 мг/м3
оксид азота (IV) NO газ бурого цвета, отход промышленных предприятий удушающее, в легких образует азотную кислоту 40 мг/м3
синильная кислота HCN бесцветная жидкость с запахом миндаля, испаряется при 26 градусах общетоксическое, блокирует поступление кислорода в ткани 11 мг/м3
адамсит C12H19AsClN желтый порошок, применяется в виде аэрозоля раздражающее слизистые оболочки 1 гр на человека
BZ C21H23NO3 бесцветные кристаллы, распыляется психомиметическое БОВ, вызывает острый психоз с галлюцинациями не выявлена, действие актуально 80 часов при приеме 1 мг на человека
бромбензилцианид C8H6BrN бесцветная жидкость слезоточивое 4 за 2 минуты
люизит C2H2AsCl3 коричневая жидкость с резким запахом герани кожно-нарывное и общетоксическое 5-10 мг на кг веса
сероводород H2S газ с запахом тухлого яйца общетоксическое и нервно-паралитическое 0,1%
хлорциан ClCN бесцветный газ с резким запахом общетоксическое, сходное с действием синильной кислоты, пробивает фильтр противогаза 0,4 мг/л, смерть в течение 1 минуты

Где поджидает опасность

К категории БОВ относятся такие вещества, как зарин, иприт, фосген, адамсит, хлорциан, люизит, синильная кислота, хлорацетофенон, CS,CR, зоман, VX,CX, дифенилцианарсин, хлорпикрин. Они внесены в списки запрещенных к применению во время боевых действий, но, судя по всему, в некоторых воинских частях имеются. Об этом говорит и тот факт, что в курсах по гражданской обороне и школьных ОБЖ до сих пор преподают навыки одевания противогаза, а в воинских частях — костюмов химзащиты (ОЗК). Антидоты к ряду БОВ входят в состав воинских аптечек.

Читайте также:  Декса гентамицин капли глазные инструкция по применению

Некоторые из БОВ имеют вполне мирное применение. Например:

  • фосген используется для производства красителей и поликарбоната,
  • синильная кислота и ее производные — в горно-рудной промышленности, при производстве пластиков, как гербицид,

Газ хлор используется в качестве средства дезинфекции, поэтому бочки с зеленой полосой, где он хранится, стоят на предприятиях, занимающихся централизованным водоснабжением.

Сероводород производится в небольших количествах живыми организмами, а также образуется при их разложении. Нашел свое место в химической промышленности и в медицине — сероводородные ванны являются одним из компонентов реабилитации при некоторых заболеваниях.

Угарный газ тоже производят на предприятиях, и идет он на производство минеральных удобрений, смесей для газогенераторов. А вот в быту он не нужен и является побочным продуктом человеческой деятельности. Он содержится в выхлопах автотранспорта и образуется при неправильной эксплуатации отопительных приборов.

Метан, Methane

Метан — газ, обычно связанный с живыми организмами. Когда в атмосферах Марса и Титана обнаружился метан, у ученых появилась надежда на то, что на этих планетах существует жизнь. На Красной планете метана немного, а вот Титан буквально «залит» им.

И уж если не для Титана, то для Марса биологические источники метана столь же вероятны, как и геологические. Метана много на планетах-гигантах — Юпитере, Сатурне, Уране и Нептуне, где он возник как продукт химической переработки вещества протосолнечной туманности.

На Земле он редок: его содержание в атмосфере нашей планеты — всего 1750 частей на миллиард по объему (ppbv).

Читайте также:  Отравление парами соляной кислоты — симптомы, первая помощь

Источники и получение метана

Метан — простейший углеводород, бесцветный газ без запаха. Его химическая формула — CH4. Малорастворим в воде, легче воздуха. При использовании в быту, промышленности в метан обычно добавляют одоранты со специфическим «запахом газа». Основной компонент природных (77—99%), попутных нефтяных (31—90%), рудничного и болотного газов (отсюда другие названия метана — болотный или рудничный газ).

На 90–95% метан имеет биологическое происхождение. Травоядные копытные животные, такие как коровы и козы, испускают пятую часть годового выброса метана: его вырабатывают бактерии в их желудках. Другими важными источниками служат термиты, рис-сырец, болота, фильтрация естественного газа (это продукт прошлой жизни) и фотосинтез растений. Вулканы вносят в общий баланс метана на Земле менее 0,2%, но источником и этого газа могут быть организмы прошлых эпох. Промышленные выбросы метана незначительны. Таким образом, обнаружение метана на планете типа Земли указывает на наличие там жизни.

Метан образуется при термической переработке нефти и нефтепродуктов (10—57% по объёму), коксовании и гидрировании каменного угля (24—34%). Лабораторные способы получения: сплавление ацетата натрия со щелочью, действие воды на метилмагнийиодид или на карбид алюминия.

В лаборатории получают нагреванием натронной извести (смесь гидроксидов натрия и калия) или безводного гидроксида натрия с уксусной кислотой. Для этой реакции важно отсутствие воды, поэтому и используется гидроксид натрия, так как он менее гигроскопичен.

Свойства метана

Метан горит в воздухе голубоватым пламенем, при этом выделяется энергия около 39 МДж на 1м3. С воздухом образует взрывоопасные смеси. Особую опасность представляет метан, выделяющийся при подземной разработке месторождений полезных ископаемых в горные выработки, а также на угольных обогатительных и брикетных фабриках, на сортировочных установках.

Так, при содержании в воздухе до 5–6% метан горит около источника тепла (температура воспламенения 650—750 °С), от 5–6% до 14–16% взрывается, свыше 16% может гореть при притоке кислорода извне. Снижение при этом концентрации метана может привести к взрыву.

Кроме того, значительное увеличение концентрации метана в воздухе бывает причиной удушья (например, концентрации метана 43% соответствует 12% O2).

Взрывное горение распространяется со скоростью 500—700 м/сек; давление газа при взрыве в замкнутом объёме равно 1 Мн/м2. После контакта с источником тепла воспламенение метана происходит с некоторым запаздыванием. На этом свойстве основано создание предохранительных взрывчатых веществ и взрывобезопасного электрооборудования. На объектах, опасных из-за присутствия метана (главным образом, угольные шахты), вводится т.н. газовый режим.

При 150-200 °С и давлении 30-90 атм метан окисляется до муравьиной кислоты.

Метан образует соединения включения — газовые гидраты, широко распространенные в природе.

Применение метана

Метан — наиболее термически устойчивый насыщенный углеводород. Его широко используют как бытовое и промышленное топливо и как сырьё для промышленности. Так, хлорированием метана производят метилхлорид, метиленхлорид, хлороформ, четырёххлористый углерод.

При неполном сгорании метана получают сажу, при каталитическом окислении — формальдегид, при взаимодействии с серой — сероуглерод.

Термоокислительный крекинг и электрокрекинг метана— важные промышленные методы получения ацетилена.

Каталитическое окисление смеси метана с аммиаком лежит в основе промышленного производства синильной кислоты. Метан используют как источник водорода в производстве аммиака, а также для получения водяного газа (т. н. синтез-газа): CH4 + H2O → CO + 3H2, применяемого для промышленного синтеза углеводородов, спиртов, альдегидов и др. Важное производное метана — нитрометан.

Формы выпуска

Глава с таким названием посвящена тем, кто любит ходить по заброшенным заводам, воинским частям и лезть туда, куда не следует. Прежде чем расковырять упаковку с какими-то буквами и цифрами, стоит узнать хотя бы их расшифровку.

Надо сказать, она не всегда одинакова. В разных отраслях приняты разные системы маркировки, а уж про стандарты других стран и говорить нечего. Но одно универсальное обозначение у ядов есть, и выглядит оно так:

Треугольника может и не быть, а вот череп — обязательно, если дело касается емкостей для хранения. Там же могут быть предупреждения со словами «смертельный» и «смертельно». Боевые единицы могут его и не содержать, в конце концов, их не для украшения создают.

БОВ российская маркировка американская маркировка форма выпуска примечание
зарин Р-35 GB металлические бочки и емкости для применения размером с термос, стеклянные шарики иногда можно встретить название Т-144 и Т-46 (трилон)
зоман Р-55 GD аналогичные бочки и снаряды
ви-газ VR VX-GAS бочки, снаряды использовался как пестицид
синильная кислота обычно пишут химическую формулу AC различная пластиковая тара и другой нейтральный материал используется как средство дератизации
хлорциан используется в промышленности, пишут название и формулу CK большие цистерны, под давлением пестицид и средство для производства красок
бромциан аналогично хлорциану в сухом виде (порошок), так как взрывоопасен
фосген Р-10 CG бочки и баллоны
дифосген DP цистерны и баллоны только промежуточная тара применяется при производстве фосгена
иприт Р-5, ВР-16 H, HD, VV бочки и снаряды разного размера
азотистый иприт HN бочки, снаряды
люизит Р-43 L бочки, цистерны исользуется для производства мышьяка
дифенилхлорарсин DA в первую мировую применялось в бомбах, бочках и газовых машинах другое название Кларк I
адамсит Р-15 DM бочки возможно, лежат на дне Балтийского моря
сирень сирень CS баллончики есть в свободной продаже
дибензоксазепин алгоген CR баллончики продаются в магазине как средство индивидуальной защиты
хлорацетофенон черемуха CN баллоны, баллончики, дымовые шашки
бромбензилцианид камит CA не применяется с Первой мировой войны
хлорпикрин нитрохлороформ пластиковая тара сельскохозяйственный ядохимикат, отрава
BZ Р-78 BZ порошок, применение через генератор аэрозоля существует в виде авиационных кассет

Токсичность [ править | править код ]

Зоман является ингибитором холинэстеразы. Первые признаки поражения наблюдаются при концентрациях около 0,0005 мг/л через минуту (сужение зрачков глаз, затруднение дыхания). Среднесмертельная концентрация при действии через органы дыхания 0,03 мг·мин/л . Смертельная концентрация при резорбции через кожу — 2 мг/кг . Защита от зомана — противогаз и средства защиты кожи, а также антидоты. Впервые синтезирован в Германии Рихардом Куном в 1944 году для использования в качестве боевого отравляющего вещества.

Самое доступное вещество

Хлор – это газ, который является легкодоступным промышленным химикатом, используемым в мирных целях, в том числе в качестве отбеливателя бумаги и ткани, для производства пестицидов, каучука и растворителей, а также для уничтожения бактерий в питьевой воде и в бассейнах. Это прекрасный пример химического вещества двойного назначения. Несмотря на его двойную природу, использование хлора в качестве химического оружия все еще запрещено Конвенцией о запрещении химического оружия (КХО).

Вам будет интересно:Что такое «агриться»: происхождение, значение, употребление

Газообразный хлор желто-зеленого цвета и имеет сильный запах, похожий на отбеливатель. Как и фосген, это удушающий агент, который препятствует дыханию и повреждает ткани организма. Он может легко находиться под давлением и охлаждаться до жидкого состояния, чтобы его можно было транспортировать и хранить. Этот смертельный газ быстро распространяется и остается близко к земле, потому что он тяжелее воздуха. Хотя он менее смертоносен, чем другие химические вещества, но очень опасен, потому что его легко изготовить и замаскировать.

Добавить комментарий